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Abstract

One of the hallmarks of human fairness is its insensitivity to power: while strong individuals
are often in a position to coerce weak individuals, fairness requires them to share the benefits of
cooperation equally. The existence of such egalitarianism is poorly explained by current evolu-
tionary models. We present a model based on cooperation and partner choice that can account
for the emergence of a psychological disposition toward fairness, whatever the balance of power
between the cooperative partners. We model the evolution of the division of a benefit in an inter-
action similar to an ultimatum game, in a population made up of individuals of variable strength.
The model shows that strong individuals will not receive any advantage from their strength, in-
stead having to share the benefits of cooperation equally with weak individuals at the evolution-
ary equilibrium, a result that is robust to variations in population size and the proportion of weak
individuals. We discuss how this model suggests an explanation for why egalitarian behaviors to-
wards everyone, including the weak, should be more likely to evolve in humans than in any other
species.

Keywords: Egalitarianism, Fairness, Partner Choice, Game Theory.
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1 Introduction
For centuries, philosophers have discussed and denounced the fallacy of the "law of the strongest."
In the first chapter of Plato’s Republic, for instance, Thrasymachus claims that "justice is nothing
else than the interest of the stronger," which Socrates then disputes. Many years later, in his
foundational work on political rights, Rousseau noted that he could not see "how morality could
result from the effects of physical power" (Rousseau, 1762). In the last decades, scientific research
has accumulated evidence of humans’ strong preference for egalitarian outcomes independently
of the power relationship between individuals (Fehr and Schmidt, 1999; Fehr and Fischbacher,
2003; Camerer, 2003; Boehm, 1993, 1997; Dawes et al., 2007; Tricomi et al., 2010). In economic
games, it has been shown that in collaboratively meaningful contexts, people favor equal divisions
when contributions are equal (Dawes et al., 2007; Cappelen et al., 2007; Frohlich et al., 2004).
A similar phenomenon is detectable early on in children, with three-year-olds dividing rewards
equally after collaboration (Warneken et al., 2011). Finally, cross-cultural studies have shown
that such behavior can be observed in many different cultural contexts, from small-scale societies
to large industrial societies. In fact, this phenomenon is so universal that anthropologists have
coined the term "egalitarian syndrome" to describe the prevalence of such preferences for equality
in small-scale societies (Boehm, 1993, 1997; Cashdan, 1980). More generally, modern mass
movements such as the anti-slavery, anti-discrimination, civil rights, and fair trade movements are
all expressions of the same urge to care for and defend the interests of the weak.

Evolutionarily speaking, these observations raise the question: why should natural selection
favor equal divisions of benefits, independently of the power struggle between the protagonists?
Or, said differently, under what conditions is it adaptive for stronger or dominant individuals to
leave half of the resource to their partners, when they could keep everything for themselves?

A useful paradigm for studying this question is the ultimatum game (UG). In this game, two
individuals bargain over the division of a benefit, with one individual (the "proposer") making an
offer to the other individual (the "responder"). If the responder accepts the offer, it is implemented;
otherwise, none of the individuals receives any benefit. The very structure of this game implies
an asymmetry of bargaining power between the two players. On the one hand, whatever offer
a responder’s partner makes, accepting it brings a greater gain than rejecting it. Therefore, in
all cases, natural selection favors indiscriminate responding, with responders taking whatever
benefits are made available to them. On the other hand, and as a result, selection favors stingy
proposers, offering the minimal possible amount. The division of benefits at the evolutionary
equilibrium is thus maximally "unfair": the empowered individual (the proposer) keeps virtually
all the benefits. The UG is therefore a conservative paradigm for studying the evolution of fairness.

In asymmetric interactions of this sort, in which a dominant individual can unilaterally im-
pose a division of resources on another, both bargaining theory (in economics) and reproductive
skew theory (in behavioral ecology) show that the dominated individual’s outside options limit the
level of inequality that the dominant can impose (Vehrencamp, 1983; Johnstone, 2000; Muthoo,
1999). However, these models treat the value of outside options as exogenous parameters, which
are fixed a priori. Hence, whereas they can account for the fact that dominant individuals leave
"something" to subordinates, they cannot explain quantitatively why equal divisions should pre-
cisely be favored by natural selection. André and Baumard (2011a) went a step further by showing
that if outside options consist in the possibility of entering into another identical interaction with
a new partner, and if the dominant or dominated status of an individual is randomly decided in
each interaction, then each individual is certain to receive an expected payoff equal to half of the
resource in the next interaction she will enter (see also André and Baumard (2011b) for a different
model leading to the same consequence). This outside option thus forces dominant individuals
to always share benefits in two equal parts, a mechanism that was already suggested verbally
by Vehrencamp (1983) and that is also conceptually similar to the infinite-horizon, alternating-
offers bargaining game of Rubinstein (1982).
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André and Baumard (2011a)’s result relies heavily on the assumption that the dominant or
subordinate status of an individual is randomly decided in each new interaction. In other words,
in this scenario, the equal division of resources is the result of equal outside options. But the
biological plausibility of equal outside options is highly debatable. For instance, in any scenario
in which dominance is not random but linked to some intrinsic property of the individual, such as
physical strength, individuals who are dominant in an interaction will also be more likely to be
dominant in other interactions. This means that two individuals engaged in an interaction will not
have the same outside options. Hence, it is legitimate to wonder whether the evolution of equal
divisions will hold after the introduction of asymmetries of strength among individuals. If not,
the observation that humans share equally even with weaker individuals, a central characteristic
of fairness, would require another explanation.

Note that other scholars have proposed alternative explanations for the evolution of human
fairness not based on the possibility of changing partners (Nowak et al., 2000; Gale et al., 1995;
Rand et al., 2013). We will present these explanations in the discussion and compare them with
our own approach, but at this stage it is important to note that none of these alternative ap-
proaches takes into account possible asymmetries of strength between bargaining individuals.
To our knowledge, this paper is the first theoretical study concerned with the evolution of hu-
man fairness that explicitly considers systematic asymmetries of strength. In the discussion, we
will also highlight the limits of our model and its relationship with the non-human literature on
biological markets (e.g., Noë et al., 1991; Noë and Hammerstein, 1995; Noë et al., 2001).

Here, we present both an analytical model and the results of individual-based simulations
on the evolution of the division of a benefit in an ultimatum game-like interaction, in a popu-
lation where individuals can change social partner. Individuals are assumed to be characterized
by an intrinsic "strength" that affects their probability of playing the strategically dominant role
of proposer in all UGs that they play. We investigated whether fair divisions evolve in such an
environment, and in particular whether strong individuals refrain from taking advantage of their
strength when they are paired with a weaker partner.

2 Methods

Individual-based simulations.

We consider a population of individuals who enter into a series of pairwise social interactions
with random partners. All individuals begin their lives in a solitary state, and they then meet
random social partners, among other solitary individuals, at a given constant rate β. When two
individuals meet, one of them is given the role of proposer, with a probability that may depend
on the relative strength of the two individuals (see below). The proposer offers a given division
of benefits to the responder, who can then either accept or refuse. If the offer is accepted, the two
individuals actually enter into the social interaction, which is assumed to take time. Hence, they
leave the pool of available solitary individuals until the end of their interaction, which occurs at a
constant "split" rate τ. On the other hand, if the offer is rejected, the two individuals immediately
go back to the pool of solitary individuals without receiving any benefit. Note that although
it is convenient to describe this interaction as an UG, it is not a real UG stricto sensu, as the
responder always has the choice of refusing an offer and hoping to interact with someone else in
the population, which is not the case in the UG.

We consider a Wright-Fisher population with non-overlapping generations. Each generation
lasts for a constant number of time steps, at which point all individuals reproduce according
to the amount of benefits they have accumulated throughout their life, and then die. Genetic
recombination is allowed between each generation.
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The cost of partner choice.

The cost of partner choice is implicit in the above model. It is a consequence of the time it
takes to find a new partner after the rejection of an offer. Hence, the cost and benefit of being
choosy are not controlled by explicit parameters, but by two parameters that characterize the
"fluidity" of the social market: the "encounter rate" β, and the "split rate" τ. When β

τ
is large,

interactions last a long time (low split rate τ) but finding a novel partner is fast (high encounter
rate β), and individuals thus should be picky about which offers they accept. On the contrary,
when β

τ
is low, interactions are brief but finding a novel partner takes time, and individuals should

thus accept almost any offer.

Strength.

We assume individuals are characterized by an intrinsic quantitative property σ ∈ [0,1] repre-
senting their "strength", which affects their probability of playing the advantageous role of pro-
poser in the UG. This intrinsic property is constant across the entire life of an individual but is
not heritable: i.e., at birth, each individual is randomly attributed a given level of "strength" that
is independent of his parent’s, according to a random distribution (see below). In an interaction
between two individuals, we assume that the strongest of the pair has a given constant probability
1
2 ∗ (1+φ) of playing the role of proposer, where φ ∈ [0,1] is a constant parameter, independent
of the quantitative difference between the partners’ strengths. When φ = 1, strength controls the
attribution of roles deterministically: the stronger partner always plays the role of proposer. When
φ = 0, strength has no effect on the assignment of roles. We also assume that, when two individu-
als of exactly equal strength are paired together, they have an equal chance of playing the role of
proposer.

Regarding the distribution of individual strength at birth, for the sake of simplicity in our
analytical approach and in most of our simulations, we assume that there are only two strengths,
and thus only two types of individuals ("strong" and "weak"). In this case, we will call any given
individual’s probability of being randomly designated as "weak" at birth x. In other versions of
our simulations, we assume instead that the strength of an individual at birth is sampled from a
uniform distribution between 0 and 1. In this case, individuals never interact with a partner of the
exact same strength.

The social strategy

To play a UG, each individual must be characterized by two different behavioral variables: the
offer they make when they play the role of proposer, and their request as a responder, i.e., the min-
imum offer they are ready to accept from their partner. The aim here is to consider the possibility
of individuals detecting their partner’s strength and adapting their behavior accordingly.

With only two levels of strength in the population, we assume that individuals are character-
ized by eight genetic variables: four pi j and four qi j variables, with i and j ∈ {s,w} denoting an
individual’s strength (s for "strong", w for "weak"). pi j is the offer made by a proposer of strength
i in an interaction with a responder of strength j. qi j is the minimum offer that a responder of
strength i is ready to accept in an interaction with a proposer of strength j. For example, a strong
individual who is the proposer in an interaction with a weak individual will propose psw benefits
to the responder. The weak individual will then compare the value of psw to his own qws, and if
psw ≥ qws, the offer will be accepted.

With a continuum of strength in the population, we assume the offer is controlled by three
underlying genetic traits: a constant γ, a degree of linear dependence on the individual’s own
strength ρp, and a degree of linear dependence on the partner’s strength ρr. The offer is given by:

O f f er = γ+ρp ∗σp +ρr ∗σr
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with σp being the strength of the proposer, σr being the strength of the responder, γ ∈ [0,1]
and ρp,ρr ∈ [0,1]. Correspondingly, with a continuum of strength the responder’s request is
genetically encoded by three loci µ, λp and λr, and given by the expression:

Request = µ+λp ∗σp +λr ∗σr

with σp being the strength of the proposer, σr being the strength of the responder, µ ∈ [0,1] and
λp,λr ∈ [0,1].

Note that although the system of offers and requests is a convenient way to model these in-
teractions, it can be interpreted biologically in a different and probably more realistic way. The
existence of offers does not necessarily imply an underlying contract: offers can also mean that
responders have some information on the proposer’s usual behaviors, for example through a rep-
utation built up in the course of past interactions with other individuals. Therefore, when an
individual is characterized by an offer p, we can also interpret this as this individual having the
public "reputation" of offering p.

Analytical model.

The analytical model incorporates all of the features of the simulations presented above, but
with one simplification: we assume that the total number of interactions accepted per unit of time
is the same for each individual. With this assumption, rejecting an opportunity to cooperate does
not compromise the chances of cooperating later, but on the contrary grants new opportunities.
This situation is analogous to the condition where β

τ
tends towards infinity in the simulations:

social opportunities are plentiful at the scale of the length of interactions. When individuals reject
an interaction, however, they are forced to postpone their social interaction to a later encounter. We
assume that this entails an explicit cost expressed as a discounting factor δ (0≤ δ < 1). If we call
the average payoff of an individual of strength i Gi, then δGi will be the average expected payoff
in the next interaction after rejecting an offer. When δ equals 1, refusing an interaction carries
no cost; when δ equals 0, refusing an offer will result in zero payoff from the next interaction.
In practice, we will neglect the case where δ equals 1, as it leads to artefactual results (see SM
section 1.2). The analytical model is fully explained and solved in SM section 1.2.

The question we want to answer is the following: how will offers and requests evolve in such
an environment, where individuals of different strengths coexist and share resources? Unless
otherwise specified, the following results are concerned with the case where there are only two
strengths coexisting in the population.

3 Results

When the population is made up of equal numbers of strong and weak individuals (x = 1
2 ), if

partner choice is not costly, the difference in strength between strong and weak individuals has
little impact on the offers that strong individuals make to weak individuals (Fig. 1). If partner
choice is not costly, starting from a stingy population of strong individuals offering nothing to
weak individuals, offers progressively raise in the population up to the point where the strong
offer close to half of the resource to their weak partners (Fig. 1 circle markers). In fact, strong
individuals offer weak individuals as much benefit as they offer to other strong individuals when
partner choice is not costly (SM Fig.1). On the contrary, when partner choice is highly costly
(Fig. 1 diamond markers), strong individuals make very low offers to weak individuals. This
result holds even if there is a continuum of strengths in the population (not just two; SM Fig. 2).
As long as partner choice is not too costly, at the evolutionary equilibrium individuals who are
paired with a stronger individual and playing the role of responder will still receive half of the
total resource to be shared.
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In the previous results, we arbitrarily set the proportion of weak individuals (x) at 0.5. It is
plausible to think that this parameter will influence the division of benefits, since it impacts the
social opportunities of weak individuals. To determine if equal divisions can still evolve when
there is a low proportion of weak individuals in the population, we ran simulations for different
values of x. The results show that this parameter in fact has a very limited impact: divisions of
resources between strong and weak individuals continue to be equal when the percentage of weak
individuals is as low as 5% (Fig. 2 left panel).

Population size is another parameter that could affect the payoff to the weak: the smaller the
population size, the smaller the total amount of social opportunities available to each individual.
To test the effect of this parameter, we analyzed the payoff to weak individuals at the evolutionary
equilibrium in populations of different sizes. Population size plays a role in determining the
payoffs received by weak individuals, but quasi-equal divisions can be found in populations as
small as 50 individuals (Fig. 2 right panel).

The results of the analytical model confirm the simulation results. When partner choice is not
costly, at the evolutionary equilibrium strong individuals do not take advantage of their strength to
offer unequal divisions to weak individuals (Fig. 3). Even in the case where weak individuals are
always in the strategically dominated position of responder when paired with a strong individual
(φ = 1), they will receive half of the resource at the equilibrium as long as the cost of changing
partners is not too high.

Analytical results also confirm that the frequency of weak individuals in the population has
a small impact on divisions at the evolutionary equilibrium. Figure 4 shows the offer made by a
strong individual to a weak individual at the evolutionary equilibrium, when φ = 1, for different
values of x. As long as partner choice is not too costly, weak individuals will receive close to half
of the resource to be shared, even when there are not many of them in the population (x→ 0).
However, the higher the cost of changing partners, the more restrictive the parameter x becomes.

4 Discussion
In this article, we have shown that equal divisions can evolve in an interaction similar to the ulti-
matum game even when some individuals are stronger than others in the population, and thus have
better average outside options than other individuals. Although they have a strategic bargaining
advantage, strong individuals agree to give close to half of the benefits of interactions to weak
individuals at the evolutionary equilibrium, a result that is robust to variations in population size
and in the proportion of strong individuals in the population. To our knowledge, this is the first
theoretical study on the evolution of human fairness that explicitly considers systematic asymme-
tries of strength, and shows that strength is not an evolutionarily relevant parameter to determine
the division of benefits in an environment where partner choice is possible. In particular, we re-
lax a crucial assumption used in previous modelling approaches (André and Baumard, 2011a) to
show that equal divisions can still evolve when some individuals have better average social op-
portunities than others, a condition necessary for understanding the reach of partner choice-based
fairness in humans.

These results shed light on an interesting question: why do strong individuals not more often
take advantage of their strength to exploit weak individuals? The answer seems to be that the
advantage of strength is only local, when what matters when individuals can choose their social
partners are global social opportunities. When individuals are embedded in a rich network of
cooperative interactions and social opportunities, their bargaining power is determined not by
local dominance relationships in each interaction, but by their outside options in the population as
a whole. Thus, a weak individual’s bargaining power is not affected by being locally dominated
in a pairing with a strong individual, because of all the social opportunities that are available with
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other partners. Confronted with an unfair offer from a strong individual, a weak individual can
easily refuse it and wait for an encounter with another weak individual. As a consequence, a
strong individual who wants to interact with a weak individual will have to offer at least what the
weak individual could gain elsewhere.

It is important to note that this result holds even when the relative proportion of weak individ-
uals in the population is small. Variation in the number of weak individuals does indeed affect the
average social opportunities of the weak. However, as long as a weak individual has at least one
other weak partner in the population, this potential cooperative opportunity will constrain what
strong individuals can offer. This result highlights the fact that the factor that most determines
individuals’ payoffs in an environment with varied social opportunities is not the average of the
social opportunities that are available to them, but their best social opportunities. Weak individu-
als can "put forward" their best social opportunities, in which they can gain 1

2 on average, when
they are bargaining with strong individuals, which leads to the evolution of equal divisions even
in strongly unbalanced populations.

Note that our results could also be interpreted the other way around: if partner choice is not
sustained, the evolutionarily stable strategy will not be fair. If human beings have the ability to
adapt (plastically) their level of fairness to cues indicating the efficiency of partner choice, then
this could help to explain some of the inequalities we observe in pastoralist or agriculturalist soci-
eties, going from mild stratification to extreme cases of despotism and slavery (Kaplan et al., 2009;
Summers, 2005), or inequalities in modern societies, for example in situations of monopoly (Kah-
neman et al., 1986; Piketty and Saez, 2014). Although these links are purely speculative at this
point, someone interested in the history of inequalities could make interesting predictions with
our model.

Our model is related to existing models of the evolution of human fairness, but previous mod-
els have not taken into account differences of strength between individuals, and thus cannot ex-
plain the emergence of equal divisions when power is unequally distributed. A widely-cited model
by Nowak et al. (2000) suffers from a restriction of the parameter space that undermines its main
result: offers progressively increase because responders can build up a reputation for refusing low
offers, but offers stabilize at 50% only because the authors arbitrarily assume that proposers can-
not request more as a responder than what they offer as a proposer, following an unsubstantiated
assertion that "individuals do not regard the role of proposer as inferior to the role of responder"
(Nowak et al. (2000) footnote 14; see André and Baumard (2011b) for a lengthy discussion of this
problem). Another line of models shows that introducing high variance in the responders’ accep-
tance threshold can also lead to increased offers in the ultimatum game (Gale et al., 1995; Rand
et al., 2013; Ichinose, 2012). Variance, depending on the model, can be due to a high mutation
rate, weak selection, learning mistakes, difficulty assessing the strategies of others, etc., but the
general mechanism is the same: when noise leads a sufficiently large proportion of responders to
keep refusing low offers, proposers have no choice but to increase their offers. A recent work also
suggests that "spiteful" strategies negatively assorted with a mix of other strategies could lead to
a certain degree of fairness (Forber and Smead, 2014), even though the use of the word "spite"
in an evolutionary context is highly debatable (West and Gardner, 2010). To our knowledge, the
only existing model on the evolution of equality with differences of strength is the model devel-
oped by Gavrilets (2012). In this model, the need for individuals to not only maximize their own
fecundity but also minimize the fecundity of others can lead to the evolution of helping behaviors
directed towards weak individuals engaged in agonistic ("owner-bully") interactions with stronger
individuals. This last mechanism based on intense inter-individual competition is an alternative
to the one we suggest based on intense cooperation, and it would be interesting to see how they
compare when it comes to explaining finer-grained properties of human fairness (Konow, 2000;
Baumard et al., 2013).

Overall, the scarcity of models of the evolution of human fairness incorporating differences
of strength makes our approach more closely related to models of reproductive skew. Skew the-
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ory aims to explain why in some species the benefits of reproduction are highly skewed in favor
of dominant individuals, whereas in other species a more equal division occurs and subordinates
reproduce as much as dominants (Johnstone, 2000). Some "tug-of-war" models of reproductive
skew have been applied to human cooperation (Barker et al., 2012), but only transactional models
emphasize the important role of subordinates’ outside options in determining how reproduction
is divided. They show that when subordinates have good outside options, dominants are forced
to give them a large number of reproductive opportunities if they want to keep them in their
group (Vehrencamp, 1983; Reeve et al., 1998). Theoretically, we depart from reproductive skew
models in the way we model outside options: rather than arbitrarily fixing a certain value for
them, outside options in our model emerge from the dynamics of social interactions themselves,
i.e., from encounters between individuals and the cost of changing partners. In this situation, if
partner choice is not costly, the model shows that strong individuals not only give something to
weak individuals, they give exactly half of the resource to be shared. Our model is also strongly
inspired from biological markets models (Noë et al., 1991; Noë and Hammerstein, 1994), in which
commodities are being exchanged and trading partners compete to be chosen by the other trading
class. A general result of this line of models, reminiscent of our own results, is that supply and
demand represented by the trading classes will determine the value of the exchanged commod-
ity (Noë and Hammerstein, 1995; Noë et al., 2001; Johnstone and Bshary, 2008). An important
difference with our model though is that we do not suppose an agent has to be firmly attached to
a specific trading class. Whereas it makes sense when modeling mating markets or interspecific
mutualisms to assign a fixed class to each agent (male or female, species A or species B, breeder
or helper, etc.), here we investigated what happens when individuals can freely switch from one
class to the other.

One important question concerns the biological interpretation of the "strength" postulated in
our models. Because we chose to model strength abstractly, it can represent any feature that affects
individuals’ "resource-holding potential" as described classically in behavioral ecology (Arnott
and Elwood, 2009): body size, body mass, development of weaponry, physiological state, etc.
The central property of strength in our models, however, is that it brings individuals only a local
bargaining power advantage, and not a global one. Fairness evolves in spite of asymmetries of
strength if stronger individuals are more likely to dominate each interaction, but not if they can
actively reduce the outside options of weaker individuals by preventing them from cooperating
with each other. This definition of strength constitutes a clear limit to our model: if we assumed
that stronger individuals had the possibility to coerce their partner into interacting, fairness could
not evolve. However, reducing others’ outside options requires a much higher investment than just
taking away resources, as individuals need to monitor who else their partners are interacting with
at any given moment. To do so, strong individuals would have to spend the majority of their time
guarding others, to the detriment of the production of cooperative benefits. At the very least, we
predict that, in situations in which such partner guarding is impossible, the benefits of cooperation
should be divided equally, irrespective of the resource-holding potential of individuals. Another
limit of our model is that we suppose strength is not heritable (i.e. we assume that investment into
competitive strength cannot evolve by natural selection). There is no doubt it would be fruitful
to relax this simplifying assumption in further models to see whether an interesting pattern of
coevolution between strength and fairness emerges.

While cooperation and partner choice are not restricted to humans, egalitarianism seems to be
rare outside the human species. Chimpanzees, unlike children for instance, do not share benefits
equally even when they had to collaborate to produce them (Melis et al., 2006), and rarely share
food at all in natural settings (Tomasello et al., 2012). Both within and beyond the primate order,
high-ranking males usually enjoy more resources than low-ranking males (Ellis, 1995). In the
kingdom Animalia, contests over resources are most often won by the individual with the highest
resource-holding power (Arnott and Elwood, 2009). This raises the question: why are humans so
prone to respect the interests of the weak? Although our model does not allow us to answer this
question with certainty, it offers at least two different hints. The first is that weak individuals in the
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human species may have a better choice of cooperative partners than those in other species. The
second hint is that in humans, strength may have a far lesser role in the generation of benefits than
it is in other species. Because of the nature of human cooperation and the variety of forms it can
take, there are ways for two physically weaker individuals to produce benefits equivalent to one
weak and one strong individual working together (Wiessner, 1996; Kaplan et al., 2009). In other
words, strength ceases to be an important factor in determining the division of benefits because it
ceases to be an important factor in determining the production of benefits. In other species, on the
contrary, the involvement of a strong individual almost always brings extra benefits that cannot be
produced in interactions involving only weak individuals (protection, access to females, territory,
or food). As a consequence, distributions skewed in favour of strong individuals are much more
frequently observed in non-human animals (Ellis, 1995; Grafen, 1987). Although at this point
these two non-exclusive hypotheses are speculative and cannot be confirmed theoretically, our
model suggests that both the quantity of human cooperation (meaning that individuals always have
a rich overall set of social opportunities) and its nature (allowing even physically weaker and hence
less competitive individuals to produce similar benefits) are human-specific selection pressures
that could have led to the evolution of concern for the interests of the weak. Of course, human
egalitarian behaviors have varied greatly across time and space, and our simple model based on
genetic transmission alone cannot capture the full complexity of human behavior and cognition in
relation to cooperation. It may nonetheless be able to explain the general and universal pattern of
egalitarian behaviors observed in many human societies (Boehm, 1993, 1997; Cashdan, 1980).
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6 Figures
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Figure 1: Average offer accepted by a weak individual paired with a strong individual across genera-
tions (simulation results). Average over 30 simulations. The dashed line corresponds to the (theoret-
ical) perfectly equal division (50 %). Parameter values: φ = 1,x = 1

2 . Circle markers: partner choice
has almost no cost (β

τ
= 100). Triangle markers: partner choice has a medium cost (β

τ
= 1). Diamond

markers: partner choice is highly costly (β

τ
= 0.01). When partner choice is not costly, weak indi-

viduals only accept offers that are close to 50% at the equilibrium. Other parameters used for these
simulations can be found in SM section 1.6.
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Figure 2: Robustness of the evolution of equal offers between strong and weak individuals (simulation
results). Left panel: average offer accepted by a weak individual paired with a strong individual at
the evolutionary equilibrium, for different fractions of weak individuals in the population. Right
panel: average offer accepted by a weak individual paired with a strong individual at the evolutionary
equilibrium, for different population sizes. Average over 30 simulations; β

τ
= 100;φ = 1. In the

left panel, x = 1
2 . Whiskers represent the min and max value obtained across 30 runs. Additional

parameter values can be found in SM section 1.6.
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Figure 3: Average offer made by a strong individual to a weak individual at the evolutionary equilib-
rium, as a function of δ and for three values of φ (analytical results). Resource size is 1, x = 1

2 . The
degree of dominance of strong individuals φ has a small impact on the offer they make. When partner
choice is not at all costly (δ→ 1), weak individuals receive half of the total resource.
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Figure 4: Average offer made by a strong individual to a weak individual at the evolutionary equilib-
rium as a function of δ and x (analytical results). Resource size is 1, φ = 1. The percentage of weak
individuals in the population has a significant effect on the weak individual’s payoff, but this effect is
limited when partner choice is not costly.
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1 Supplementary material

1.1 Supplementary figures
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Figure 1: Average offer accepted by a strong individual paired with a strong individual across gen-
erations (simulation results). Average over 30 simulations. The dashed line corresponds to the (the-
oretical) perfectly equal division (50 %). Parameter values: φ = 1,x = 1

2 . Circle markers: partner
choice has almost no cost (β

τ
= 100). Triangle markers: partner choice has a medium cost (β

τ
= 1).

Diamond markers: partner choice is highly costly (β

τ
= 0.01). When partner choice is not costly,

strong individuals give as much to other strong individuals as they give to weak individuals (see Fig.
1 for comparison). Other parameters used for these simulations can be found in SM section 1.6.
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Figure 2: Average benefit received by an individual paired with a stronger individual across gener-
ations (continuum of strengths in the population). Average over 30 simulations. Parameter values:
φ = 1. Circle markers: partner choice has almost no cost (β

τ
= 100). Triangle markers: partner choice

has a medium cost (β

τ
= 1). Diamond markers: partner choice is highly costly (β

τ
= 0.01). When part-

ner choice is not costly, weaker individuals only accept offers that are close to 50% at the equilibrium.
Other parameters used for these simulations can be found in SM section 1.6.

1.2 Analytical resolution of the model
As mentioned in the main article, the asymmetry of bargaining power between proposers and respon-
ders is what makes the UG interesting for studying the evolution of resource division. Because respon-
ders are in an inferior bargaining position, in the following analysis we will focus on responders’—and
not proposers’—payoffs in the UG. A responder receiving a large share of the resource is a strong
indication that there are evolutionary forces at work against the classical proposers’ selfishness in the
UG.

All our analyses assume that (i) individuals enter the population at a constant rate, (ii) evolution is
slow compared to an individual’s lifespan (and thus ) (iii) mutations are rare, and that (iv) there is no
recombination between genetic traits (pi j and qi j). As a consequence of (i) and (ii), the composition
of the population does not change during an individual’s life. As a consequence of (iii) and (iv), at any
evolutionary equilibrium, all the strategies present in the population must reach the same payoff for
individuals of a given strength (only a high mutation rate or recombination rate could continuously re-
introduce maladaptive strategies in the population, yielding a variance of payoffs at each generation).

Here we make the reasoning used to answer the question posed in the main article explicit: namely,
how will the behavioural traits pi j and qi j (i and j ∈ {s,w}) evolve in an environment where strong
and weak individuals coexist and share resources? As a reminder, qws reads as "the minimum offer
that a weak individual will accept from a strong individual," and psw as "the offer a strong individual
will make to a weak individual."

Following the precise evolutionary dynamics of the system to answer this question is quite a
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complex challenge, in particular due to epistasis phenomena. The low fitness benefits brought by an
offer p can be compensated by high benefits from an acceptance threshold q, or small benefits obtained
in interactions with individuals of one strength could be compensated by high benefits received in
interactions with the other strength, generating linkage disequilibrium (McNamara et al., 2008). But
as in (André and Baumard, 2011), it is easier to derive simple conditions on the payoff an individual
would or would not have an interest in accepting at the evolutionary equilibrium.

1.3 Solving the system
The reasoning is more normative than descriptive, as we consider a situation in which the equilibrium
has already been reached, and derive constraints on the values of traits that individuals should display
at the equilibrium. To derive the payoff a weak individual should receive from a strong individual at
the evolutionary equilibrium, we need to consider four arguments:

1. All individuals with the same strength must gain the same payoff. At the equilibrium, all
strong individuals should gain the same payoff Gs per interaction (otherwise it wouldn’t be an
equilibrium), and the same is true for weak individuals. We thus only have two average payoffs
in the population at the equilibrium. The average payoff of a strong individual is labeled Gs,
and that of a weak individual is written Gw.

2. Every individual with strength i accepts exactly δGi, with i ∈ {s,w}. If an individual’s
average payoff is Gi, his expected payoff in the next interaction (if the current interaction is
refused) will be δGi. As a consequence, an individual in the position of responder in the UG
should never refuse an offer that is above the corresponding δGi, but should always refuse
offers that are below this level. At the equilibrium, because offers from proposers should evolve
toward the minimum that responders will accept, individuals will always demand and accept
exactly δGi, no matter who they are interacting with (regardless of their partner’s strength). We
thus have: 

qss = δGs
qsw = δGs
qww = δGw
qws = δGw

(1)

Note that this reasoning assumes that acceptance thresholds q are optimized by natural selec-
tion, whereas this is not necessarily the case in practice because a certain variability in offers
is necessary for this optimization to take place. Nonetheless, André and Baumard (André and
Baumard, 2011) showed that even without this assumption, the central results of this modeling
approach hold in the simple case where there is only one class of individuals in the population.
Here we confirm through simulations that this is also the case when two strengths coexist in the
population.

3. Proposers give responders what they want at the evolutionary equilibrium.
Knowing (1) and (2), it can be shown that proposers are always better off giving responders
what they "ask for" (δGi) at the evolutionary equilibrium, as long as δ < 1. The reasoning is as
follows.

Suppose that at the evolutionary equilibrium, all strong individuals refuse to give weak individ-
uals what they ask for, namely δGw (but all other demands are satisfied). The average social
payoff of a strong individual in this population is then
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Gs =
(1− x)

2
+ x(

1
2
(1+φ)δGs +

1
2
(1−φ)δGs) (2)

As in the main text, x is the proportion of weak individuals in the population, φ the probability
that a strong individual will be the proposer in the UG when paired with a weak individual, and
the size of the UG resource to be shared is 1. Gs can be decomposed into three terms: an average
payoff obtained in interactions with another strong individual (1

2 ), an average payoff obtained
in interactions with a weak individual as proposer (in this case, the offer will be rejected and the
strong individual’s payoff will be discounted by δ), and, finally, an average payoff obtained in
interactions with a weak individual as responder (the strong individual’s demand is met, δGs).

Similarly, the payoff of a weak individual in this population is

Gw =
x
2
+(1− x)(

1
2
(1−φ)(1−δGs)+

1
2
(1+φ)δGw) (3)

Solving the system composed of equations (2) and (3) gives us an expression for Gs and Gw. The
question we need to answer now is the following: what would happen if, in such a population,
a mutant strong individual decided to accept to give weak individuals what they want? Upon
meeting a weak individual and being assigned the role of proposer, this mutant would gain
1−δGw (the resource to be shared minus the demand of a weak individual) instead of just δGs
(the average payoff being discounted). Knowing Gw and Gs, it is easy to show that it is never
possible that δGs ≥ 1−δGw as long as δ < 1. In other words, at the evolutionary equilibrium,
it is impossible that all strong individuals refuse to offer δGw to weak individuals, because they
would gain more from doing so.

What if there was some polymorphism in the population such that only some strong individuals
refuse to give weak individuals what they ask for? The average social payoff of those strong
individuals is still written the same as in equation (2). But because we know that at the evolu-
tionary equilibrium all individuals with the same strength must gain the same payoff, the payoff
of strong individuals will be the same, regardless of phenotype. The coexistence of two types
of strong individuals in the population would imply that δGs = 1−δGw (the payoff of the two
types of strong individuals in the position of proposer when paired with weak individuals is
equal), but as we showed above, this is not possible as long as δ < 1. As a consequence, it is
not only impossible that all strong individuals refuse to give weak individuals what they want
at the evolutionary equilibrium, it is also impossible that some strong individuals refuse to give
weak individuals what they want as long as δ < 1.

Following the same reasoning, it can be shown that it is not possible for some individuals (of
any strength) to refuse to give their social partner (of any strength) what they ask for at the
evolutionary equilibrium (see SM section 1.4), and we thus have:

pss = δGs
psw = δGw
pww = δGw
pws = δGs

(4)

4. No offer in the UG is never refused
From step (3) it directly results that no offer in the UG is ever rejected at the evolutionary equi-
librium, because each proposer’s offer is exactly equal to the responder’s acceptance threshold,
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and thus each offer is accepted. If no offer in the UG is ever refused, the average payoff of
strong and weak individuals respectively can be written as:

Gs =
1−x

2 + x(1
2(1+φ)(1−δGw)+

1
2(1−φ)δGs)

Gw = x
2 +(1− x)(1

2(1−φ)(1−δGs)+
1
2(1+φ)δGw)

(5)

Solving this system gives us an expression for Gs and Gw as a function of x,δ and φ at the evolu-
tionary equilibrium: 

Gs =
−δ(φ+1)+2xφ+2
δ((4x−2)φ−2)+4

Gw = δ(φ−1)+2(x−1)φ+2
δ((4x−2)φ−2)+4

(6)

Equations (4) and (6) can be used to derive the value of psw that is plotted in Figs. 3 and 4 of the
main paper:

psw = δ
δ(φ−1)+2(x−1)φ+2

δ((4x−2)φ−2)+4
(7)

1.4 Verification that proposers are always better off accepting the responder’s
demand at the evolutionary equilibrium

There are four hypothetical primary situations that need to be taken into account:

• a: when strong individuals are proposers, they refuse to meet the demands of other strong
individuals

• b: when strong individuals are proposers, they refuse to meet the demands of weak individuals

• c: when weak individuals are proposers, they refuse to meet the demands of other weak indi-
viduals

• d: when weak individuals are proposers, they refuse to meet the demands of strong individuals

These situations are not mutually exclusive, however, so the total number of possible situations is:

∑
4
k=1

(
4
k

)
= 15

Situation b was already proven to be impossible at the evolutionary equilibrium in the previous
section. We now show that the same holds for the 14 remaining situations, by giving the expected
social payoff of strong and weak individuals in each situation. We also give the condition that must
be satisfied for each situation to be possible at the evolutionary equilibrium; it is then straightforward
to show that, given our parameter values (0≤ x≤ 1, 0≤ δ < 1 , 0≤ φ≤ 1), this condition can never
be satisfied.

Situation a:

• Gw = (1− x)
(1

2δ(φ+1)Gw + 1
2(1−φ)(1−δGs)

)
+ x

2

• Gs = x
(1

2(φ+1)(1−δGw)+
1
2δ(1−φ)Gs

)
+δ(1− x)Gs

• Condition 1−δGs ≤ δGs impossible
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Situation c:

• Gw = (1− x)
(1

2δ(φ+1)Gw + 1
2(1−φ)(1−δGs)

)
+δxGw

• Gs = x
(1

2(φ+1)(1−δGw)+
1
2δ(1−φ)Gs

)
+ 1−x

2

• Condition 1−δGw ≤ δGw impossible

Situation d:

• Gw = (1− x)
(1

2δ(1−φ)Gw + 1
2δ(φ+1)Gw

)
+ x

2

• Gs = x
(1

2(φ+1)(1−δGw)+
1
2δ(1−φ)Gs

)
+ 1−x

2

• Condition 1−δGs ≤ δGw impossible

Situation a & c:

• Gw = (1− x)
(1

2δ(φ+1)Gw + 1
2(1−φ)(1−δGs)

)
+δxGw

• Gs = x
(1

2(φ+1)(1−δGw)+
1
2δ(1−φ)Gs

)
+δ(1− x)Gs

• Condition 1−δGw ≤ δGw∧1−δGs ≤ δGs impossible

Situation b & c:

• Gw = (1− x)
(1

2δ(φ+1)Gw + 1
2(1−φ)(1−δGs)

)
+δxGw

• Gs = x
(1

2δ(1−φ)Gs +
1
2δ(φ+1)Gs

)
+ 1−x

2

• Condition 1−δGw ≤ δGs∧1−δGw ≤ δGw impossible

Situation c & d:

• Gw = (1− x)
(1

2δ(1−φ)Gw + 1
2δ(φ+1)Gw

)
+δxGw

• Gs = x
(1

2(φ+1)(1−δGw)+
1
2δ(1−φ)Gs

)
+ 1−x

2

• Condition 1−δGw ≤ δGw∧1−δGs ≤ δGw impossible

Situation b & d:

• Gw = (1− x)
(1

2δ(1−φ)Gw + 1
2δ(φ+1)Gw

)
+ x

2

• Gs = x
(1

2δ(1−φ)Gs +
1
2δ(φ+1)Gs

)
+ 1−x

2

• Condition 1−δGw ≤ δGs∧1−δGs ≤ δGw impossible

Situation a & d:

• Gw = (1− x)
(1

2δ(1−φ)Gw + 1
2δ(φ+1)Gw

)
+ x

2

• Gs = x
(1

2(φ+1)(1−δGw)+
1
2δ(1−φ)Gs

)
+δ(1− x)Gs

• Condition 1−δGs ≤ δGs∧1−δGs ≤ δGw impossible

Situation a & b:
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• Gw = (1− x)
(1

2δ(φ+1)Gw + 1
2(1−φ)(1−δGs)

)
+ x

2

• Gs = x
(1

2δ(1−φ)Gs +
1
2δ(φ+1)Gs

)
+δ(1− x)Gs

• Condition 1−δGw ≤ δGs∧1−δGs ≤ δGs impossible

Situation a & c & d:

• Gw = (1− x)
(1

2δ(1−φ)Gw + 1
2δ(φ+1)Gw

)
+δxGw

• Gs = x
(1

2(φ+1)(1−δGw)+
1
2δ(1−φ)Gs

)
+δ(1− x)Gs

• Condition 1−δGs ≤ δGs∧1−δGw ≤ δGw∧1−δGs ≤ δGw impossible

Situation a & b & c:

• Gw = (1− x)
(1

2δ(φ+1)Gw + 1
2(1−φ)(1−δGs)

)
+δxGw

• Gs = x
(1

2δ(1−φ)Gs +
1
2δ(φ+1)Gs

)
+δ(1− x)Gs

• Condition 1−δGw ≤ δGw∧1−δGs ≤ δGs∧1−δGw ≤ δGs impossible

Situation b & c & d:

• Gw = (1− x)
(1

2δ(1−φ)Gw + 1
2δ(φ+1)Gw

)
+δxGw

• Gs = x
(1

2δ(1−φ)Gs +
1
2δ(φ+1)Gs

)
+ 1−x

2

• Condition 1−δGw ≤ δGw∧1−δGs ≤ δGw∧1−δGw ≤ δGs impossible

Situation a & b & d:

• Gw = (1− x)
(1

2δ(1−φ)Gw + 1
2δ(φ+1)Gw

)
+ x

2

• Gs = x
(1

2δ(1−φ)Gs +
1
2δ(φ+1)Gs

)
+δ(1− x)Gs

• Condition 1−δGs ≤ δGs∧1−δGw ≤ δGs∧1−δGs ≤ δGw impossible

Situation a & b & c & d:

• Gw = δ(1− x)Gw +δxGw

• Gs = δ(1− x)Gs +δxGs

• Condition 1−δGs ≤ δGs∧1−δGw ≤ δGs∧1−δGw ≤ δGw∧1−δGs ≤ δGw impossible

As explained in the previous section, the verification that it is not possible for some (but not all)
individuals not to interact with other individuals at the evolutionary equilibrium (in case of polymor-
phism) is already implied by the use of not strict inequalities.

8



1.5 Verification that results are unchanged when using an absolute cost instead
of a discount factor

Suppose that when an individual rejects an offer, his average payoff is not discounted by δ but is
decreased by a fixed amount c. Knowing that no offer in the UG is ever refused, we can rewrite the
average payoff of strong and weak individuals respectively at the evolutionary equilibrium as :

Gs =
1−x

2 + x(1
2(1+φ)(1− (Gw− c))+ 1

2(1−φ)(Gs− c))

Gw = x
2 +(1− x)(1

2(1−φ)(1− (Gs− c))+ 1
2(1+φ)(Gw− c))

(8)

Solving this system gives us an expression for Gs and Gw as a function of x,c and φ at the evolu-
tionary equilibrium: 

Gs =
φ((4c+2)x−1)+1

(4x−2)φ+2

Gw = φ(4c(x−1)+2x−1)+1
(4x−2)φ+2

(9)

From here it is straightforward to show that both Gs and Gw tend towards 0.5 when c = 0 and
φ = 1, as it was the case when using a discount factor instead of an absolute cost of changing partner.

1.6 Simulation parameters
All simulations were coded in Netlogo (Wilensky, 1999) and ran on a dedicated cluster of computers
managed by HTCondor (University of Wisconsin–Madison, 2013). Data analysis and graphical rep-
resentations (including those from the analytical model) were obtained using Mathematica (Wolfram
Research, 2012). The code for all simulations and data analysis is available on request from the first
author of this paper.

Parameters Figure 1 et SM1

Initial pi j: 0
Initial qi j: 0
Population size: 500
Lifespan: 500
Generations: 8,000
Mutation rate: 0.002
Mutation standard deviation: 0.02
φ: 1
x: 0.5
τ: 0.01
β: 1, 0.01 or 0.0001

Parameters Figure 2

Initial pi j: 0
Initial qi j: 0
Population size: 500
Lifespan: 500
Generations: 8,000
Mutation rate: Left panel: 0.02, right panel: 1/population size
Mutation standard deviation: Left panel: 0.05, Right panel: 0.02
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φ: 1
x: Left panel: variable, Right panel: 0.5
τ: 0.01
β: Left panel: 1, Right panel: 10

Parameters Figure SM2

Initial γ: 0
Initial ρp: -1
Initial ρr: 1
Initial µ: 0
Initial λp: -1
Initial λr: -1
Population size: 500
Lifespan: 500
Generations: 8,000
Mutation rate: 0.02
Mutation standard deviation: 0.1
φ: 1
τ: 0.01
β: 1, 0.01 or 0.0001
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